# **Bridging the Gap Between Carbon Sequestration Science and Engineering**



Second Annual Conference on Carbon Sequestration

May 8, 2003

Rita A. Bajura, Director

**National Energy Technology Laboratory** 





## **DOE Office of Fossil Energy Sequestration Program**

#### Core R&D

Separation & Capture of CO<sub>2</sub>

Measurement, Monitoring & Verification

**Sequestration** 

Non-CO<sub>2</sub> GHG Mitigation

Breakthrough Concepts



## Infrastructure

- Regional Partnerships
- Assessments/ SystemsAnalyses

Integration
FutureGen
Integrated
Sequestration
and Hydrogen
Initiative



## **FE Sequestration Program Funding**





Carbon Sequestration Technology Roadmap and Program Plan (March 2003)

## **FE Sequestration Program Goals**

- By 2012, provide commercially ready options with:
  - < 10% increase in cost of energy services
  - < \$10 per tonne CO<sub>2</sub> avoided
- Establish measurement, monitoring
   & verification protocols
- Contribute to Administration's goal of reducing GHG intensity by 18% by 2012



## DOE's Office of Science Carbon Sequestration Research Programs

- Enhancing the natural terrestrial cycle
- Carbon sequestration in the ocean
- Microbial genome research
- Sequestering carbon in underground geologic formations

Science-Based Solutions for Mitigating Global Climate Change



### **Sequestration at DOE**

Climate Change Technology Office

Coordination



Office of Fossil Energy

Applied R&D

Office of Science

**Basic Science** 



## **DOE Office of Fossil Energy Sequestration Program**

#### Core R&D

Separation & Capture of CO<sub>2</sub>

Measurement, Monitoring & Verification

**Sequestration** 

Non-CO<sub>2</sub> GHG Mitigation

Breakthrough Concepts



- Regional Partnerships
- Assessments/ SystemsAnalyses

Integration
FutureGen
Integrated
Sequestration
and Hydrogen
Initiative



## **FutureGen Concept**





## Why an Integrated Demo?

Verify integrated operation at commercial scale

 Provide definitive environmental, performance, and cost data to help make rational policy, regulatory, and investment decisions



### North American Coal Units First Year of Operation



Many coal plants will need to be replaced or repowered starting in 2020



## **Window of Opportunity**

- Opportunity to deploy nearzero emission coal technologies after 2020
- Construction decisions need to be made starting 2015



We need to act now to provide the definitive data to help make rational decisions in next 10 to 15 years



## **DOE Office of Fossil Energy Sequestration Program**

#### Core R&D

Separation & Capture of CO<sub>2</sub>

Measurement, Monitoring & Verification

**Sequestration** 

Non-CO<sub>2</sub> GHG Mitigation

Breakthrough Concepts



- Regional Partnerships
- Assessments/ SystemsAnalyses

Integration
FutureGen
Integrated
Sequestration
and Hydrogen
Initiative



## **Regional Carbon Sequestration Partnerships**

Industry, Universities, and Regional, State & Local Governments

- Baseline region for sources and sinks
- Address regulatory, environmental, outreach issues
- Establish monitoring and verification protocols
- Test sequestration technology at small scale
  - Phase 1 design
  - Phase 2 testing
- Determine benefits of sequestration to region





## **Synergies**



## **DOE Office of Fossil Energy Sequestration Program**

#### Core R&D

Separation &Capture of CO<sub>2</sub>

Measurement, Monitoring & Verification

**Sequestration** 

Non-CO<sub>2</sub> GHG Mitigation

Breakthrough Concepts



Infrastructure

- Regional Partnerships
- Assessments/ SystemsAnalyses

Integration
FutureGen
Integrated
Sequestration
and Hydrogen
Initiative



### **Funding Allocation** FY 2002 Core R&D Portfolio



## **Issues:** Separation & Capture of CO<sub>2</sub>

#### Increased

- Capital cost (30 to 100%)
- Operating cost (25 to 100%)
- Parasitic power loss (5 to 30%)

#### **Decreased**

• Plant efficiency (< 30%)



## Pathways: Separation & Capture of CO<sub>2</sub>

- Pre-combustion decarbonization
- Oxygen-fired combustion
- Post-combustion capture
- Advanced integrated capture systems
- Chemical looping





## **Oxyfuel Technology**

## An advanced boiler that integrates:

- Air separation using O<sub>2</sub> transport membrane
- O<sub>2</sub> combustion

#### **Participants:**

- Praxair
- Alstom Power





## Thermally Optimized CO<sub>2</sub> Membrane

CO<sub>2</sub> selective, polymericmetallic membrane that operates up to 350 °C

#### **Participants:**

- LANL
- INEEL
- U. of Colorado
- Pall
- Shell



Polybenzimidazole (PBI) Coated Metal



## **Issues:** Sequestration

- Health, safety, and environmental risks
- Permanence and large-scale verification
- Capacity evaluation
- Infrastructure
- Uncertain regulatory frameworks
- Protocols for identifying amenable storage sites
  - Direct CO<sub>2</sub> storage
  - Enhanced natural sinks



## Pathways: Sequestration

- Underlying science
- Field experiments
- Demonstration projects
- Regional Partnerships



## First U.S. Depleted Reservoir Storage Project

## Track CO<sub>2</sub> plume from 2,100 ton CO<sub>2</sub> injection

#### **Participants:**

- Strata
- Pecos
- NM Tech
- Sandia
- LANL
- NETL





## **Terrestrial Sequestration on Mined Land**



Reforest 650 acres of unproductive mine lands

#### **Participants:**

- VPI
- U. of Kentucky

## Issues: Measurement, Monitoring & Verification

Surface leakage detection tools

Improved subsurface assessment tools

Protocols for accounting & certifying permanence



## Pathways: Measurement, Monitoring & Verification

- Atmospheric detection systems
- 4-D seismic for subsurface detection
- CO<sub>2</sub> fate & transport models
- Regional Partnerships



## Remote Monitoring of Terrestrial Sequestration



Advanced videography for aerial-based estimation of carbon in vegetation & soil

#### Participants:

- Nature Conservancy
- Winrock International Institute



Advanced Vidiography results shown are from Rio Bravo Project in Belize on the Pine Savanna

## Weyburn Enhanced Oil Recovery Project



Sequester 1 MMT CO<sub>2</sub> per year from Dakota Gasification Plant

#### **Participants:**

- CanMet
- Pan Canadian
- IEA GHG Programme





## Issues: Non-CO<sub>2</sub> Greenhouse Gases

 Emissions sources are widely dispersed and in many sectors

 Ownership / regulatory uncertainty





## Pathways: Non-CO<sub>2</sub> Greenhouse Gases

- Develop technologies to tap economic value of fugitive methane emissions
  - Coalbeds
  - Landfills
- Collaborate with EPA to develop best practice mitigation options



## Capture & Use Mine Mouth Ventilation Air

Demonstrate "thermal flow reversal reactor" at commercial scale

#### **Participants:**

- CONSOL
- MEGTEC





## Issues: Breakthrough Concepts

- Revolutionary approaches
- Leapfrog cost reductions





## Pathways: Breakthrough Concepts

- Advanced capture concepts
- Advanced chemical reaction pathways
- Biogeochemical processes
- Novel integrated systems
- Subsurface conversion



## **CO<sub>2</sub>** Mineralization

## CO<sub>2</sub> reacts with minerals to form stable, solid carbonates



**Atomic Surpentine Structure** 

#### **Participants:**

- Albany
- ASU
- LANL
- NETL



**Bench-Scale Flow Loop Reactor** 



## **Future Direction for Breakthrough Concepts**

- National Academy of Sciences "beating bushes" for ideas
  - Workshop targeting universities / small business held in February 2003
- Issuing solicitation FY 04
  - Planned FY 04 funding of \$1–2 million







## Why Sequestration?

- Needed to meet energy supply and climate objectives
- Compatible with existing energy infrastructures
- May prove to be lowest cost option



